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Some recently proposed models of hydrophobic attraction, equivalent to the Ising model

of ferromagnetism, are described and their properties reviewed. They are such that the

accommodation of a hydrophobic solute in the solvent is energetically favorable but even

more unfavorable entropically, which is believed to be the basic mechanism of hydro-

phobicity in water solution. The effective attraction between pairs of solute molecules as

mediated by the solvent is calculated, as is the deviation from additivity in the interac-

tions among three or more. The very low solubilities of the solutes in the model solvents

are also calculated. In a different model, based on a phenomenological free energy lead-

ing to a closed-loop solubility curve in the temperature-composition plane, one finds the

same very great increase in heat capacity on dissolving a hydrophobic solute as is found

in experiment.
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When a hydrophobic solute such as a hydrocarbon molecule dissolves in water,

both the energy and entropy decrease; that is, the dissolution is energetically favor-

able but entropically unfavorable. It is on balance so unfavorable that the solubility is

very low. The net increase in free energy when two such solute molecules are accom-

modated in the solvent is less when they are close together than when they are far

apart, with the consequence that there is an effective, solvent-mediated attraction be-

tween them. This is the hydrophobic attraction, which is of importance in many areas

of physical chemistry and biochemistry [1–12]. It is closely related to the solvation

force as calculated in the beautiful paper by Evans and Stecki [l3].

Lattice model: To illustrate this mechanism [l4], we adapted a one-dimensional

lattice model originally proposed as a student exercise in statistical mechanics by

Ben-Naim [l5]. At each site is a molecule that can be in any of q different states or take

on any of q different orientations. Only nearest neighbors interact, which they do with

energy w if both are in a special one of the q states and with energy u > w otherwise. In

our adaptation of the model we take those molecules to constitute the solvent and we

then add a second species as a solute to the model solvent. The solute molecules are

only allowed to occupy interstitial sites, with a finite energy v, but then only if the two
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solvent molecules between which the solute is to be accommodated are both in that

special orientation in which their own interaction energy is the lower energy w rather

than the higher energy u. In this way the energetic contribution to the free energy of

solvation is the favorable –(u-w), while the entropic contribution is the unfavorable

kTln(q-1), where k and T are the Boltzmann constant and the absolute temperature,

respectively.

Specifically,

�F = – (u-w) + kTln(q-1) (1)

is the cost in free energy of forcing a solvent molecule to be in its special orientation

when a specified one of its neighbors is already in that orientation. The solute is hy-

drophobic when �F > 0. It is an immediate consequence of (1) that the hydrophobic

effect is stronger at higher temperatures than at lower. This agrees with experiment.

The properties of this one-dimensional model are found analytically [l4]. Let P11

be the probability, in the pure solvent, that the molecules at a given pair of neighbor-

ing sites be both in their special orientation, and let P(r) be the probability that the

molecules at two such pairs of sites be all in that special orientation when the distance

(measured as a multiple of the lattice spacing) between the first pair of neighbors and

the second is r. Then, independently of the solvent-solute interaction energy v, the sol-

vent-mediated part, W(r), of the potential of mean force between pairs of solute mole-

cules in the model solvent is found from the potential-distribution theory [16] to be

W(r) = –kT ln
P(r)

P11

2
(2)

This is the effective interaction between solutes over and above whatever direct inter-

action there may be between them. That W(r) is a property of the solvent is in accord

with earlier ideas [7].

For this one-dimensional model the two probabilities P(r) and P11 are found by

transfer-matrix methods [17], with the result that

W (r) = –kT ln 1
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c = e(u – w)/kT, x
q 1

c
�

�
(6)

The range (exponential decay length) � of the potential W is, according to (3),

� �
�
�

1

ln
1 S

1 S

(7)

Typically, �F in (1) is much less than either u-w or kTln(q-1) separately, which are

themselves much greater than kT, with the result that c >> x. We then have

� � kT/�F (8)

The numerator in (8) increases with increasing T at the rate k, while the denominator,

according to (1), increases with T at the much greater rate kln(q-1), so while the

strength of the hydrophobic interaction, measured by �F, increases with increasing T,

its range, �, decreases with increasing T. These conclusions are clear in Figs. 1 and 2,

which show the potential W(r) (in units of k) and the corresponding attractive force

–W�(r)/k (in units of k and the lattice spacing), as functions of r, for the three tempera-

tures 275, 300, and 348 K, having chosen for the parameters the values (u-w) /k =

3000 K and q-1= 110 000.

The solubility of the hydrophobic solute in the model solvent is given by the

dimensionless quantity �,

� = P11 e–v/kT (9)
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Figure 1. Solvent-mediated potential of mean force between a pair of solute molecules, in units of the

Boltzmann constant, as a function of the distance r between molecules, in units of the lattice

spacing.



where now the solute-solvent interaction parameter v enters. The probability P11, as

determined from the model’s transfer matrix, is

P11 = {– (x – 1) (c – 1) +
1

2
[ (x – 1) c + 2] [x + 1 + (x – 1) /Q]}–1 (10)

with x, c, and Q as defined in (4) and (6). Again with c >> x, the solubility � becomes

� �
e

(x 1) c

v/ kT

2

�

�
(11)

This decreases with increasing T at low temperatures and continues decreasing if v <

u-w; but if v > u-w, after initially decreasing with increasing T, the solubility reaches a

minimum and then increases. The decrease is a manifestation of the increasing

strength of the hydrophobic effect with increasing temperature, while the subsequent

increase in the solubility, when it occurs, is the more common effect of temperature

ultimately manifesting itself. Such variations with temperature of the solubility of hy-

drophobic solutes in water are as observed in experiment and in simulations [18].

Two and three dimensional versions of this model have also been studied [19].

The problem is then no longer analytically soluble, but W(r) and � are still given by

(2) and (9), while the required probabilities P(r) and P11 are obtained by Monte Carlo

simulation. The results are qualitatively similar to those in the one-dimensional ver-

sion of the model, although now W(r) has some small oscillations, reflecting the

greater geometrical complexity of the lattice in the higher dimensions. Such oscilla-

tions are seen also in models in which the solvent is modeled more realistically [7,11].

An interesting recent development [20] has been the demonstration that these lat-

tice models are equivalent to an Ising model on the same lattice. The spin-spin inter-
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Figure 2. Solvent-mediated mean force between pairs of solute molecules.



action-energy parameter J and magnetic field H in the equivalent Ising model are

related to the present parameters u-w and q-1 by

J =
1

4
(u-w), 2H =

1

2
Z (u-w) – kT ln (q-1) (12)

where Z is the coordination number of the lattice. Here, H > 0 favors the special orien-

tation of the solvent molecules in the solution model and H < 0 any of the remaining

q-1 orientations. When kT ln (q-1) > (1/2) Z (u-w) >> kT, as in the numerical illustra-

tion above, almost none of the solvent molecules are in the special orientation. In one

dimension, where Z=2, we have the identification 2H = –�F. The potentials of mean

force W(r) in the lattice hydrophobic-interaction models are directly transcribable

from the spin-spin correlation functions of the Ising model. Such transcription has

also been exploited [21] in obtaining potentials of mean force for decorated-lattice-

gas models that are likewise equivalent to underlying Ising models.

The general potential of mean force among n solute particles has also been calcu-

lated analytically in the one-dimensional version of the model [22] and is found to be

the sum of the pair potentials between nearest neighbors only. Thus, for example, the

potential among three, W (r12, r23), where rij is the distance between solute molecules i

and j and r13 = r12 + r23, is the sum of the two pair potentials W(r12) + W(r23). The spe-

cifically three-body part of the total W(r12, r23), i.e., the difference between it and the

sum of the three pair potentials W (r12) + W (r23) + W (r13), is then –W (r13). This illus-

trates the deviation from additivity of hydrophobic interactions.

Phenomenological model with closed-loop solubility curve: In Fig. 3 is a sche-

matic representation of a closed-loop solubility curve in the temperature-compo-

sition plane of a binary (A,B) liquid mixture at fixed pressure. It has been noted (see,

for example, the brief remark in [11] that the lower critical solution point is a

manifestation of the hydrophobic effect. For states on the lower part of the curve, the

mutual solubility of A and B decreases with increasing temperature. If component B

is water then the decreasing solubility of A with increasing temperature is one of the

signatures of the hydrophobic effect, as noted in the preceding section.

In addition, if at fixed temperature and pressure a molecule of A from the rela-

tively A-rich phase is transferred to the relatively B-rich phase with which it is in

equilibrium, and if this occurs in an equilibrium state on the lower part of the curve,

where the solubility of A in B is decreasing with increasing T, then the entropy and

enthalpy changes �S and �H (= T�S) accompanying the transfer are both negative,

which again is characteristic of the hydrophobic effect. [When one subtracts from this

entropy of transfer the ideal k ln ( / )x xA A

� � , where x A

� is xA in the A-rich phase from

which the transfer is made and x A

� is xA in the coexisting B-rich phase to which it is

made, the result, which is the part of the entropy of transfer that is due only to the ac-

companying structural changes in the phases, is then even more negative.] By con-

trast, when such a transfer occurs in states on the upper part of the curve, �S and �H

are both positive. The sign change occurs at some temperature between that at which
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dxA/dT = 0 on the left-hand branch of the coexistence curve and that at which dxA/dT = 0

on the right-hand branch. When in a theoretical model those two temperatures are the

same by symmetry, the sign change occurs at that common temperature, which is also

where the coexistence curve is at its widest.

It is also frequently noted that the partial molar heat capacity with respect to sol-

ute concentration of a dilute aqueous solution of a hydrophobe is characteristically

large and positive, in contrast with that for a non-hydrophobic solute [12,23–32]. We

have studied a model based on a phenomenological free energy that leads to a

closed-loop solubility curve such as that in Fig. 3, and with this model have calculated

the difference between the partial molecular heat capacity of A at infinite dilution in B

and the heat capacity per molecule of pure A, as a function of the temperature [33].

Our model Gibbs free energy G(T,p,NA,NB) as a function of temperature T, pres-

sure p, and the numbers of molecules NA and NB is

G(T,p,NA,NB) = NA (� A

� + kT ln xA + �x B

2 ) + NB (� B

� + kT ln xB + �x A

2 ) (13)

where � A

� = � A

� (T,p) and � B

� = � B

� (T,p) are the chemical potentials of pure A and B,

where xA = NA/(NA + NB) and xB = NB/(NA + NB) are the mole fractions, and where � =

�(T,p), at any fixed p, is a function of T that depends on three (in principle pres-

sure-dependent) parameters �, TU, and TL,

�
� �

�
� � � �

1

2

kT

(1 4 )[(T T ) / (T T )]m U L

2
(14)

with

Tm =
1

2
(TU + TL) (15)
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Figure 3. Closed-loop solubility curve in the temperature-composition plane at fixed pressure, for a mix-

ture of species A and B.



With 0 < � < 1/4 this implies a closed-loop coexistence curve such as that in Fig. 3,

with TU and TL the temperatures of the upper and lower critical points.

The difference between the partial molecular constant-pressure heat capacity

(�Cp/�NA)T,p,N
B

of A at infinite dilution in B, and the constant-pressure heat capacity

per molecule c p

A of pure A, is readily calculated from (13)–(15). This difference, di-

vided by the Boltzmann constant k so that it is dimensionless, and with the parameter

values

� = 0.15, TU = 425 K, TL = 300 K, (16)

is plotted as a function of T over the range 275 K < T < 450 K in Fig. 4. With this value

of � the compositions of the coexisting phases at the coexistence curve’s widest part,

which occurs at T= Tm = 362. 5 K, are xA= 0. 954 and xB = 0.046 in the A-rich phase

and vice versa in the B-rich phase. The mutual solubility at this temperature is thus

4.6%.

The plotted heat capacity difference has a very high maximum, approximately

150 k, at T � 368 K, just a little above Tm. It is large and positive wherever the mutual

solubility is low but not where it is high. We have not specified the pressure dependence

of any of the quantities in our phenomenological model. It is observed in experiment

that a closed-loop solubility curve usually becomes smaller, i.e., that the mutual solu-

bility of A and B increases, with increasing pressure [34]. Our present results imply

that the heat capacity anomaly should then also decrease with increasing pressure,

eventually disappearing entirely. This is in accord with what has been observed in

molecular dynamics simulations [32].
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Figure 4. Difference between the partial molecular constant-pressure heat capacity of A at infinite dilu-

tion in B and the constant-pressure heat capacity per molecule of pure A, as a function of the

temperature.



With the same model one may also calculate the limiting entropy difference �s*

defined by

�s* = lim [�s – k ln (1/x A

' )], (17)

x A

' � 0

where �s is the entropy of isothermal transfer of an A molecule from pure A to a

B-rich solution in which xA = x A

' . The heat capacity difference that is plotted in Fig. 4

in units of k is also T d�s*/dT, or lim ��s/�ln T. With the same values of the parameters

as in that figure, �s* is negative at temperatures below 370 K, as a manifestation of

the hydrophobic effect, and positive above. Thus, the heat capacity anomaly is great-

est not where the hydrophobic effect is greatest but near where it vanishes, and where

the previously hydrophobic solute becomes hydrophilic.
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